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LETTER TO THE EDITOR 

Classical dynamical origin of F e y "  paths? 

M Roncadelti 
I", Sezione di Pavia, Via A. Bassi 6.1-27100 Pavia, Italy 

Received 6 July 1992, in final form 5 January 1993 

Abstract Even though only the classical action explicitly appears in the F e y "  path 
integral, quantum fluctuations show up in the fluctuating naNre of Feynman paths. This 
prevents a clussicdinterpreralion of the latter objects. Still, it makes sense 10 ask whether 
the Feynman paths have any relation to the classical dynamical trajectories in confib- 
ration space-a possibility naturally suggested by the semiclassical approximation. 
Unfortunately, no such relation exists (in general). Things are quite different for the 
generalized Feynman paths, which actually wntribuIe in a novel path integral giving an 
alternative representation of the quantum mechanical propagator. We show that these 
paths fluctuate about a clmica1 dynm'cul Imjectory (in configbtion space) because of a 
certain white noise. That is to say, the generalized Feynman paths are fluctuating a w e s  
that wllapse'on a classical dynamical trajectoryas h-0. This result throws "ew ligh1 on 
the interplay between classical and quantum mechanics and hints at a new approach to the 
quanhm theory. 

The Feynman path integral plays nowadays a central role in quantum physics and 
offers a more intuitive view of quantization as compared to the canonical operator 
approach. 

Our aim is to discuss certain features of this strategy which seem to have attracted 
tittle attention so far. This will be done by considering non-relativistic quantum 
mechanics corresponding to the classical Lagrangian 

L(x, i, t) =:mi.$, + Q # ( X ,  t ) i ,  - q x ,  t) (1) 
which describes a point particle 9' (mass m, no spin) with configuration space &='?AN. 
Some generalizations will be presented elsebhere. 

As is well known, the Feynman path integral representation of the propagator reads 
(Feynman and Hibbs 1965, Kleinert 1990, Schulman 1981) 

(x", PIX', t ')  = 9x(t)b(x"-x(t"))6(x' -x(t')) ex~(dh)S[x(.)]:} (2) I 
with S[x(.)]: denoting the classical action along a generic path x(t)e& 

The paths which actually contribute in the path integral (2) are commonly referred to 
as Feynman paths. Although all (continuous) trajectories joining (x ' ,  t ' )  with (x", I )  
seem to enter the Feynman path integral, it turns out that the Feynman paths form a 
certain subset of fractal curves with Hausdorff dimension two, namely they are 
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characterized by the property Ax@-(At)'". This fact entails that these objects have a 
fluctuating nature quite similar to that of the erratic trajectories familiar from the 
theory of macroscopic Brownian motion. All this should not come as a surprise &er 
all, since the Feynman approach to quantum mechanics is structurally very similar to 
the Wiener-Onsager-Machlup formulation of classical stochastic diffusion processes 
in &=aN (within this analogy, classical probabilities are obviously replaced by 
complex quantum amplitudes whereas the diffusion constant D is formally imaginary 
in quantum mechanics and is proportional to h). As a consequence, the Feynman 
paths are conceptually on the same footing as the Wiener path7 which enjoy the 
property Ax(?) - (At)'" as well. 

Actually, the nature of Wiener paths is best clarilied by the Langevin description of 
classical stochastic diffusion processes. Since this circumstance is very hiqmrtant for 
the considerations that we have in mind, we shall briefly discuss this point before 
addressing the question asked in the title. Consider a dfision process in &=aN with 
diffusion constant D and drift velocity V(x, t )  (Gardiner 1985, Risken 1984, Van 
Kampen 1981). Then the sample paths of the process in question are given by the 
h g e v i n  equation 

d 
- dt U t )  = Vi(6(t), t) + (2~)"%4)  (4) 

where q(t) ={qi(t)}l<j<N are Gaussian whife noise variables defined by the functional 
(probability) measure 

%tq(.)I -'%(O exp 4112) drvi(t)vj(t) . (5) { I 
We denote by $(t ;x ' , t ' ; [q( - ) ] )  the solution to (4) with initial condition E(t ' )=x' .  
Because of (5), it follows that these solutions are fractal curves with Hausdorff 
dimension two, that is to say A&; x',  t'; [qc)])  -(At)"*. Moreover, whenever fluc- 
tuations can be neglected, equation (4) reduces to the deterministic equation 

d 
dr - = V,(P(t), t) (6) 

whose solution with initial condition q(t')=x' will be denoted by q(t;x' , t ') .  
Correspondingly. as D+O we have .$(t; 2, t'; [qc)])-q(r; x',  t') for any noise sample 
q(r). AU this means that the sample paths $(t; x',  t'; [?(.)I) can be viewed as 
fluctuating curves about the deterministic trajectory q(t; x ' ,  r'). Now, it can be shown 
that the Wiener paths have the same (functional) probability distribution as the 
solutions of (4), and so the Wiener paths joining ( x ' , t ' )  with (x",t") can be 
understood as trajectories E(t;x' ,  f'; [qc)])  which fulfil the condition 

E(P;x',t';[q(.)])=x" (7) 
for all Gaussian white noise conEgurations q(t). Therefore we see that the considered 
Wiener paths fluctuate about the deterministic trajectory q(t;x ' ,  t') given by (6) 
because of a Gaussian white noiset. 

t They,are analogously defined as the paths which contriiute in the Wiener-Onsager-Machlup functional 
integral. * M-this is of course well known to people working in the field of stochastic processes. However, as far as 
we can see, several physicists interested in quantum mechanics seem not to be quite familiar with stochastic 
processes. We have therefore decided to briefly review these matters here. 
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Coming back to quantum mechanics, one naturally wonders whether a similar 
mechanism underlies the Feynman path integral. Can the Feynman paths be regarded 
as solutions of a certain Langevin equation? Suppose momentarily that the answer lies 
in the positive. Then the Feynman paths could be viewed-in the same sense as 
before-as fluctuating curves about a deterministic trajectory (which obeys the 
Langevin equation in question with the noise term discarded). What is the physical 
meaning of such a deterministic trajectory? 

An important virtue of the Feynman formulation is to provide an appealing 
connection between classical and quantum dynamics, in that the classical action 
appears in (2). We stress that quantum fluctuations show up within the F e y ”  path 
integral precisely in the fluctuating nature of Feynman paths, making them consistent 
with the uncertainty relations (Feynman and Hibbs 1965). Hence these paths do not 
possess any classical meaning. We also mention that amplitudes-but not probabili- 
ties obeying classical Kolmogorov axiom-can consistently be associated with the 
Feynman paths, so that they cannot be interpreted as trajectories followed by S in the 
classical sense. Consider now the behaviour of the Feynman path integral in the 
asymptotic Limit h+O. Manifestly, quantum tluctuations tend to disappear and 
concomitantly classical dynamics emerges via a stationary action mechanism. Thus, 
we are led to expect that there should be some relation between the Feynman paths 
and the classical dynamical trajectories. Can the Feynman paths be actually recog- 
nized as fluctuating curves about a classical dynamical trajectory? 

Remarkably enough, the whole issue can be settled in a fairly simple way. We start 
by observing that the path integral (2) with Lagrangian (1) can be cast in the form . 
by, PIX’, t’)= 9 X ( f ) s ( x ~ ~ - x ( r ~ ) s ( x ’ - x ( r ’ ) )  I 

1’1 1 

Further, the first exponential in (8) can be rewritten as? 

1’1 1 

with the definition 

9P[r1~)1-97(0 e“p( ~ 2 )  d t q i ~ q i ( ~ ] .  (10) 

Observe that (10) is very similar to (5), and so r](t)={q;(t)}rsi4N will be naturally 
referred to as Fresnel white noise variables (no confusion will arise, for only the 
Fresnel white noise will be considered from now on). Physically, equation (10) should 

t The notation 6[f(r)]: means a functional delta function, namely the continuous product of ordinary delta 
functions 6lf(f)) for all values off between I’ and P. 
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be interpreted as an amplitude (pseudo) measure, in agreement with the fact that 
probabilities get replaced by amplitudes in quantum mechanics. Next, we make use of 
the well known identity (Zinn-Justin 1989) 

x 6(x' -x ( t ' ) )J [x( - ) ]  

where .+(-)I is the functional Jacobian detlS[jci(t) + Qi(x(t), t)/m]/&,(t')l and 
& x ' ,  t'; [qc)])  denotes the solution (with initial condition J( t ' )=x ' )  to the follow- 
ing Langevin equation 

Since 9p[q( . ) ]  in (10) defines an amplitude distribution, probabilities obeying classical 
Kolmogorov axioms cannot be associated with the solutions of (12), whose interpre- 
tation is therefore the same as for Feynman paths. Quite similarly to what happens for 
(4), we have A&x',t'; [q(.)])-(At)In as a consequence of (10). Moreover, in the 
limit h+O, equation (12) manifestly reduces to 

We denote by q(t; x', t') the solution to (13) (with initial condition &') =x' ) .  Thus, 
as h-tO we have &t;x' , t ' ;  [q(-)])+q(t;x', t') for any noise sample q(t). Again, all 
this means that the solutions $( t ;x ' , t ' ; [q( . ) ] )  can be viewed as fluctuating curves 
about q(t;x ' ,  t'). Combining now (9) and (11) together, we get 

1 1'1 EOx(t)6(x"-x(t"))6(x'-x(t')) exp I 
r 

11 t)Qi(x(t), t )+@(x(t) ,  t)  

(14) 
showing that the Feynman paths joining (x',  t') with (x", t") can be understood as 
trajectories &;x' ,  f ' ;  [qc) ] )  which fullil the condition 

&t"; x ' ,  t'; [?( . ) I )  =x" (15) 
for all Fresnel white noise configurations q(t). We conclude that the Feynman paths in 
question fluctuate about the deterministic trajectory &x', t') given by (13) because 
of the Fresnel white noise. Unfortunately, q(t; x', t') is not (in general) a classical 
dynamical trajectory of 5P in Ju (indeed, by taking the time derivative of (13) it is 
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straightforward to see that q ( t ; x ' , t ' )  does not obey the Lagrange equations corres- 
ponding to Lagrangian (1) for an arbitrary choice of the potentials). Thus, the 
question asked in the title has a negative answer. 

Yet, the situation changes drastically when the attention is turned to the new path 
integral which enters the alternative representstion of the propagator (Roncadelli 
1792) 

(x", f'lx', t')=exp{(idh)[S(x", t") -S(x',  t ' ) ]}  %(t) 6(x"-x(t"))6(xf-x(t ' ) )  I 
x exp{ (ilh) (ml2) [ dt[i&) -Ti(x(t),  t; [S(-)])]z] 

,' 

where we have set 

Yi(X, t; [S(-)]) S(x, t) - Q,(x, f) 

and S(x, f) denotes throughout an arbitrary solution of the classical Hamilton-Jacobi 
equation associated'with Lagrangian (1) 

(18) 
a 

The paths which actually contribute in the path integral (16) for a given S(x, f) will be 
referred to as generalized Feynman paths controlled by S(x, t) (since the integrand 
depends on S(x,t)  so, in general, will the paths under consideration). Also the 
generalized Feynman paths are fractal curves with Hausdorff dimension two (namely 
for which Ax(t) - (At)'") and there are infinitely-many equivalent sets of generalized 
Feynman paths-each controlled by a particular solution S(x, t)-for the RHS of (16) 
does not (globally) depend on which specific S(x,t) is used?. Before proceeding 
further, we recall that once a particular (arbitrary) integral S(x, t )  is known, a family 
of trajectories in & is provided by the equation 

d 
- dt qit) =~, (m t ;  [S(.)I). (19) 

If we denote by q(t; x ' ,  t'; [S(-)]) the solution to (19) with initial condition ~ ( t ' )  =x' 
and controlled by S(x, t), then q(t; x', t'; [S(-)]) is just the classical dynamical trajec- 
toryof ~in&selectedbytheinitialdataq(t')=x',p(t')=(VS)(x', t') (Amold 1978). 

Now, the very strong structural similarity between (19) and the exponent in the 
path integral (16) suggests that the generalized Feynman paths might have a simple 
relation to the classical dynamical trajectories in d. As we shall demonstrate below, 
this is indeed the case and the generalized Feynman paths possess a classical 
dynamical origin. 

t AU prevlous remarks about the interpretahon of Feynman paths apply to generalized Feynman paths as 
well. 
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Let us apply to the new path integral the same formal manipulations which led us to 
(14) starting from the Feynman path integral. We lind I ax(t)S(xff-x(~~))~(xf - x ( t ' ) )  exp dt[i,{t) -T.(x(t), t; [s(.)])]' 

(the meaning of all other symbols is the same as for the previous case). Then (20) 
shows that the generalized Feynman paths controlled by S(x, t) which join (x' ,  t') with 
(x", t") can be recognized as trajectories C(t;x', t'; [Se), 7(.)]) fulfilling the condition 

for all Fresnel white noise configurations ~ ( t ) .  Now, in the l i t  h+O, (21) manifestly 
reduces to (19), and so as h+O we have $(t;x',  t'; [Se), q(-)])+q(f;x', t'; [Se)]) for 
any noise sample &). Once again, all this entails that the solutions 
E(t; n', t'; [Se), q(.)]) are fluctuating curves about the classical dynamical trajectory 
q(t; x ' ,  t'; [Se)]) controlled by the same S(x, f)t. 

We conclude that the generalized Feynman paths (entering the path integral (16)) 
controlled by S(x, t )  fluctuate about the classical dynamical trajectory in Jbl defined by 
initial data q(t') =x',p(t') = (VS) (x ' ,  t'). More generally, we see that the generalized 
Feynman paths in question arise from the classical dynamical trajectory 
q(t;x ' ,  t'; [Se)]) as a consequence of the Fresnel white noise. 

In our opinion, the new path integral (16) is much more closely related to classical 
dynamics than the Feynman path integral. Not only are all quantities which explicitly 
appear in it genuinely classical, but also the integration paths possess a classical 
dynamical origin. Accordingly, (16) can be interpreted in a very suggestive pictorial 
way (which would be impossible for the Feynman path integral). Choose an arbitrary 
solution S(x, t) of (18) and consider the corresponding classical dynamical trajectory 
q(t;x ' ,  f ' ;  [S(.)]). Then the quantum mechanical propagator (x", PIX', t') arises-up 
to the classical exponential prefactor-by summing the classical object 

gi?; x' ;  t'; [Se), V C ) ] )  =x" (22) 

dt[i,(t) -Vdx(t), t; [S(.)])]' 

t A comment about this result is perhaps in order. Since S(x, t) is an arbitaq solution to (18), it can well 
happen that q(f"; x', I'; [Se)]) is very far away from x". Still, the generalized Feynman paths controlled by 
the same S(x, r) should go through x" (this follows from their very delinition). But then one can well wonder 
whether,fluctuations are able to make 5(C x ' ,  I'; [Se), ?j(.)]) coincide with x". As a matter of fact, exactly 
the same situation OCCUIS in the Langevin description of a classical diffusion process. Indeed. since the drift 
in (6) is obviously independent of x", it often happens that q(C x ' ,  t ') is largely different from x", and yet 
the Wiener paths go through x". So, one is again Led to wonder how can fluctuations achieve 
E(l";x', f'; [qc)]) =x". Au we can tell is that mathematically the mechanism works, in spite of the fact that 
we have not been able to find a more intuitive explanation. 
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over all trajectories that fluctuate about q(t; x', t'; [S(*)]) because of the Fresnel white 
noise and happen to end up in x" at time 1. Different solutions S(x, t )  would give rise 
to different classical dynamical trajectories in 44. Still, they all lead to the same 
quantum mechanical time evolution! This explains why the dependence on the initial. 
momentum gets washed out on going over to the quantum theory (recall that 
p(t')= (VS)(x', l')). Besides interesting in its own right, this scenario suggests quite 
naturally that quantum mechanics could be reformulated by taking (U), (21) and (10) 
as a starting point. The Fresnel white noise would then bring quantum fluctuations 
into the otherwise classical game (these matters will be discussed elsewhere). 

We would like to thank A Defendi, I Guameri, E Pollak and L Schulman for useful 
discussions. 
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